
EXTENSIÓN DEL MODELO DE REGRESIÓN LINEAL DE DOS VARIABLES

REGRESIÓN A TRAVÉS DEL ORIGEN

"A MENOS QUE EXISTA UNA EXPECTATIVA A PRIORI MUY FUERTE ES ACONSEJABLE APEGARSE AL MODELO CONVENCIONAL CON PRESENCIA DE INTERSECCIÓN"

¿QUÉ OCURRE CON LOS MODELOS SIN INTERCEPTO?

Prof. Laura Castillo

- ➤ Si el modelo que se va estimar teóricamente debe llevar intersección y ésta no se incluye, se puede cometer un error de especificación y con ello violar un supuesto del MCRL, dando origen a estimadores **NO MELI.**
- La $\sum \hat{u}_i$ que siempre es cero en modelos con intercepto puede no serlo cuando está ausente $\hat{\beta}_1$. Es decir que los residuos ya no tienen media muestral igual a cero $E(u_i|X_i) \neq 0$.
- El coeficiente de determinación (R^2) que siempre es no negativo podría llegar a ser negativo, por tanto el coeficiente de determinación convencional no resulta adecuado para evaluar la bondad de ajuste del modelo. Para ello se utiliza el R^2 simple, que se interpreta de la manera ya conocida pero no se puede comparar con el R^2 tradicional.

$$R^{2}simple = \frac{(\sum X_{i}Y_{i})^{2}}{\sum X_{i}^{2} \sum Y_{i}^{2}}$$

- \triangleright Si en el modelo poblacional el intercepto es diferente de cero, y se usa un modelo muestral con $\hat{\beta}_1 = 0$, los estimadores MCO de la pendiente estarán sesgados.
- \triangleright El costo de estimar $\hat{\beta}_1$ cuando realmente $\hat{\beta}_1 = 0$, es que las varianzas de los estimadores MCO son mayores (no mínimas).

Prof. Laura Castillo Econometría I Capítulo 6. Tema III

En resumen:

MODELO CON INTERCEPTO	MODELO SIN INTERCEPTO
$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$	$Y_i = \hat{\beta}_2 X_i + \hat{u}_i$
$\hat{\beta}_2 = \frac{\sum x_i y_i}{\sum x_i^2}$	$\hat{\beta}_2 = \frac{\sum X_i Y_i}{\sum X_i^2}$
$Var(\hat{\beta}_2) = \frac{\sigma^2}{\sum x_i^2}$	$Var(\hat{\beta}_2) = \frac{\sigma^2}{\sum X_i^2}$
$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{n-2}$	$\hat{\sigma}^2 = \frac{\sum \hat{u}_i^2}{n-1}$

"Si la intercepción efectivamente está ausente, el coeficiente de la pendiente puede ser estimado con mucha más precisión que cuando el término de la intersección está incluido" H. Theil (1978)

Ejemplo 1¹: Considere el modelo de asignación de precios de activos de capital (CAMP) de la teoría moderna de portafolios, expresada

$$(ER_i - r_f) = \beta_i (ER_m - r_f) \qquad (2)$$

El modelo puede expresarse como:

$$R_i - r_f = \beta_i (R_m - r_f) + u_i$$

 $R_i - r_f = \alpha_i + \beta_i (R_m - r_f) + u_i$ MODELO DEL MERCADO

Si se cumple el CAMP, entonces $\alpha_i = 0$

La siguiente regresión muestra los datos referentes a los rendimientos excedentes (Yt) en %, de índice de 104 acciones del sector de bienes de consumo cíclico y los rendimientos excedentes (Xt) en % del índice de todo el mercado de valores del Reino Unido para 1980:01-1999:12

Prof. Laura Castillo Econometría I Capítulo 6. Tema III

¹ Revisar Haim Levy y Marsahall Sarnta, (1984). *Portfolio and Investment Selection: Theory and Practice*. Cap. 14

² ER_i: tasa esperada de rendimiento del título i. ER_m: tasa esperada del rendimientos del portafolios del mercado como se representa. r_f: tasa de rendimiento libre de riesgo. B_i: coeficiente BETA (medida de riesgo sistemático, es decir, riesgo que no se ha eliminado con la diversificación)

Dependent Variable: Y Sample: 1980M01 1999M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
X	1.155512	0.074396	15.53200	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.500309 0.500309 5.548786 7358.578 -751.3032 1.972853	Mean depende S.D. depende Akaike info o Schwarz crite Hannan-Quir	ent var criterion crion	0.499826 7.849594 6.269193 6.283696 6.275037

Dependent Variable: Y Sample: 1980M01 1999M12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C C	0.448404	0.2620.42	1 22222	0.0400
C	-0.447481	0.362943	-1.232925	0.2188
X	1.171128	0.075386	15.53500	0.0000
R-squared	0.503480	Mean depend	lent var	0.499826
Adjusted R-squared	0.501394	S.D. depende	7.849594	
S.E. of regression	5.542759	Akaike info	6.271160	
Sum squared resid	7311.877	Schwarz criterion		6.300165
Log likelihood	-750.5392	Hannan-Quinn criter.		6.282847
F-statistic	241.3363	Durbin-Watson stat		1.984746
Prob(F-statistic)	0.000000			

¿Qué diferencias encuentra en los dos modelos?

Ejemplo 2: PIB en millones e inversión doméstica privada bruta millones (GPDIM), EEUU 1988-1997.

Dependent Variable: PIB Sample: 1988 1997

Variable	Coefficient	Std. Error	t-Statistic	Prob.
GPDIM	0.007259	0.001385	5.240237	0.0005
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-54.203821 -54.203821 3.380733 102.8642 -25.84351 0.550763	Mean depende S.D. depende Akaike info o Schwarz crite Hannan-Quir	ent var criterion erion	6.440900 0.455016 5.368702 5.398960 5.335508

Dependent Variable: PIB Sample: 1988 1997

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GPDIM	7.018338 -0.000840	0.245104 0.000318	0.0000 0.0295	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.466572 0.399894 0.352485 0.993965 -2.646191 6.997338 0.029472	Mean dependence S.D. dependence Akaike info e Schwarz critic Hannan-Quin Durbin-Wats	ent var criterion erion nn criter.	6.440900 0.455016 0.929238 0.989755 0.862851 0.724787

¿Cuál de los dos modelos es mejor? ¿Por qué?

ESCALAS Y UNIDADES DE MEDICIÓN

Los cambios en las escalas y en las unidades de medida se realizan con la finalidad expresar números en menores cantidades que permitan ser manejados fácilmente.

Sea
$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$$
 (1)

Defina:
$$Y_i^* = w_1 Y_i$$

 $X_i^* = w_2 X_i$
 $\hat{u}_i^* = w_1 \hat{u}_i$

 $w_1 y w_2$ Se denominan **FACTORES DE ESCALA** $(w_1 = 6 \neq w_2)$

$$Y_i^* = \hat{\beta}_1^* + \hat{\beta}_2^* X_i^* + \hat{u}_i^*$$
 (2)

Aplicando en método de MCO a (2) se obtiene:

$$\hat{\beta}_{1}^{*} = \bar{Y}^{*} - \hat{\beta}_{2}^{*} \bar{X}^{*}$$

$$\hat{\beta}_{1}^{*} = \bar{Y}^{*} - \hat{\beta}_{2}^{*} \bar{X}^{*}$$

$$\hat{\beta}_{2}^{*} = \frac{\sum x_{i}^{*} y_{i}^{*}}{\sum x_{i}^{*2}}$$

$$Var(\hat{\beta}_{1}^{*}) = \frac{\sum X_{i}^{*2}}{n \sum x_{i}^{*2}} \sigma^{*2}$$

$$Var(\hat{\beta}_2^*) = \frac{\sigma^{*2}}{\sum x_i^{*2}}$$

$$\sigma^{*2} = \frac{\sum \hat{u}_i^{*2}}{n - k}$$

Se pueden establecer las relaciones entre los dos conjuntos de parámetros estimados:

$$\hat{\beta}_2^* = \left(\frac{w_1}{w_2}\right)\hat{\beta}_2$$

$$\hat{\beta_1}^* = w_1 \hat{\beta_1}$$

$$\sigma^{*2} = w_1^2 \hat{\sigma}^2$$

$$Var(\hat{\beta}_1^*) = w_1^2 Var(\hat{\beta}_1)$$

$$Var(\hat{\beta}_2^*) = \left(\frac{w_1}{w_2}\right)^2 Var(\hat{\beta}_2)$$

$$R^2_{xy} = R^2_{x^*y^*}$$

Cambios en el origen:

$$Y_i^* = a + Y_i$$

$$X_i^* = b + X_i$$

Si
$$(a = ó \neq b)$$

$$\hat{\beta}_2^* = \hat{\beta}_2$$

$$\rho_{xy} = \rho_{x^*y^*}$$

"LA TRANSFORMACION DE LA ESCALA (Y, X) A LA ESCALA (Y*, X*) NO AFECTA LAS PROPIEDADES DE LOS ESTIMADORES MCO"

Ejemplo 3: Inversión doméstica privada bruta (GPDIBL) en función del PIB (GDPB), ambos en miles de millones de dólares del 2000, EEUU 1990-2005.

Dependent Variable: GPDIBL

Method: Least Squares Sample: 1990 2005 Included observations: 16

 $\rho = 0.9822$

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C GDPB	-926.0904 <mark>0.253524</mark>	116.3577 0.012947	-7.958996 19.58237	0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.964777 0.962261 66.42693 61775.51	Mean depender S.D. dependen Akaike info cri Schwarz criteri	t var terion	1329.144 341.9404 11.34655 11.44312

Inversión doméstica privada bruta (GPDIM) en función del PIB (GDPPM) ambos en millones de dólares, EEUU 1990-2005.

Dependent Variable: GPDIM Method: Least Squares Sample: 1990 2005

Sample: 1990 2005 Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-926090.4	116357.7	-7.958996	0.0000
GDPPM	<mark>0.253524</mark>	0.012947	19.58237	
R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.964777	Mean dependent	1329144.	
	0.962261	S.D. dependent	341940.4	
	66426.93	Akaike info cri	25.16206	
	6.18E+10	Schwarz criteri	25.25863	

$$\rho = 0.9822$$

REGRESIÓN SOBRE LAS VARIABLES ESTANDARIZADAS

La influencia que tiene sobre la interpretación de los efectos de las variables las unidades de medida en que éstas sean expresadas, puede evitarse si se expresan ambas variables como *variables estandarizadas*.

Una variable estandarizada se expresa como:

$$Y_i^* = \frac{Y_i - \overline{Y}}{ee_y} \qquad \qquad X_i^* = \frac{X_i - \overline{X}}{ee_x}$$

La propiedad más resaltante de las variables estandarizadas es que el valor de su media siempre es cero y su desviación estándar es siempre 1.

$$Y_i^* \sim (0,1)$$
 $X_i^* \sim (0,1)$

La regresión con variables estandarizadas queda:

$$Y_i^* = \beta_2^* X_i^* + u_i^*$$

¿POR QUÉ?, ¿QUÉ
PASA CON EL
COEFICIENTE DEL
INTERCEDTO?

PARA TENER EN CUENTA:

- Los coeficientes de regresión de las variables estandarizadas se conocen como coeficientes beta³.
- Después de estandarizadas las variables ya no importa las unidades de medida.
- Los coeficientes beta se interpretan en términos de desviaciones estándar, es decir, se mide el efecto en las unidades de la desviación estándar.
- Los coeficientes dentro de la misma ecuación son comparables entre sí. Se pueden utilizar como una medida de fuerza relativa de las distintas regresoras.

³ No se deben confundir estos coeficientes beta con los coeficientes beta de la teoría del portafolio. Prof. Laura Castillo Econometría I

Ejemplo 4: Regresión de inversión sobre PIB

VARIABLES ORIGINALES VARIABLE			RIABLE	S ES	STANDA	RIZADAS	S			
Matriz de correlación				Ma	triz de	e correlación	ı			
PIB 1.0		INV .164923 .000000			INV PIB	INV 1.000000 0.164923	0.16	IB 54923 00000		
Dependent Variable Method: Least Squ Variable		Std. Error	t-Statistic	Prob.	Dependent Varia	quares		6.1.5		
C	900.2423	58.96998	15.26611	0.0000	Variable	Coeffic		Std. Error	t-Statistic	Prob.
PIB	0.001281	0.002708	0.472948	0.6489	C PIB	-1.331 0.164		0.330817 0.348712	-4.02E-10 0.472948	1.0000 0.6489
R-squared Adjusted R- squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.027200 -0.094401 153.3561 188144.8 -63.40130 0.269266	Mean depender S.D. depender Akaike info cr Schwarz criter F-statistic Prob(F-statisti	nt var riterion rion	916.1100 146.5929 13.08026 13.14078 0.223680 0.648885	R-squared Adjusted R-squared S.E. of regression Sum squared resi Log likelihood Durbin-Watson s	n 1.046 id 8.755 -13.52	1401 5136 5204 2470	Mean depend S.D. depende Akaike info c Schwarz crite F-statistic Prob(F-statist	nt var riterion rion	-1.00E-10 1.000000 3.104940 3.165457 0.223680 0.648885

¿Cómo interpretaría los parámetros estimados de cada regresión?

Lecturas obligatorias:

- ✓ Gujarati, D. y Porter, D. (2010). Econometría. 5ta. Edición McGraw Hill. Capítulo 6.
- ✓ Wooldridge, J. (2010). Introducción a la econometría un enfoque moderno. Capítulos 6.

Prof. Laura Castillo Econometría I Capítulo 6. Tema III